
MATH 2020 Advanced Calculus II
Tutorial 3
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Solution. The region is given by
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2. Find the area of the region lying in the first quadrant and bounded by the curve
x3 + y3 = 3xy. (The curve is called the Folium of Descartes.)
Solution. First we rewrite the equation of the given curve in polar form (x =

r cos θ, y = r sin θ):

x3 + y3 = 3xy ⇐⇒ r3(cos3 θ + sin3 θ) = 3r2 cos θ sin θ

⇐⇒ r =
3 cos θ sin θ

cos3 θ + sin3 θ
.

Notice that the set of θ for which the curve lies in the first quadrant is
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.
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3. Compute the volume of the solid bounded by the unit sphere x2+y2+z2 = 1 without
using polar coordinates.
Solution. By symmetry, the volume is equal to 8 times the volume of the piece lying
in the first octant:

volume = 8
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